
ACM Reference Format
Wu, J., Popović, Z. 2010. Terrain-Adaptive Bipedal Locomotion Control. ACM Trans. Graph. 29, 4, Article 72
(July 2010), 10 pages. DOI = 10.1145/1778765.1778809 http://doi.acm.org/10.1145/1778765.1778809.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2010 ACM 0730-0301/2010/07-ART72 $10.00 DOI 10.1145/1778765.1778809
http://doi.acm.org/10.1145/1778765.1778809

Terrain-Adaptive Bipedal Locomotion Control

Jia-chi Wu Zoran Popović

University of Washington

Figure 1: A biped (left) performs a 180◦ turn and then walks backwards on uneven terrain and (right) climbs up stairs.

Abstract

We describe a framework for the automatic synthesis of biped lo-
comotion controllers that adapt to uneven terrain at run-time. The
framework consists of two components: a per-footstep end-effector
path planner and a per-timestep generalized-force solver. At the
start of each footstep, the planner performs short-term planning in
the space of end-effector trajectories. These trajectories adapt to
the interactive task goals and the features of the surrounding uneven
terrain at run-time. We solve for the parameters of the planner for
different tasks in offline optimizations. Using the per-footstep plan,
the generalized-force solver takes ground contacts into consider-
ation and solves a quadratic program at each simulation timestep
to obtain joint torques that drive the biped. We demonstrate the
capabilities of the controllers in complex navigation tasks where
they perform gradual or sharp turns and transition between moving
forwards, backwards, and sideways on uneven terrain (including
hurdles and stairs) according to the interactive task goals. We also
show that the resulting controllers are capable of handling morphol-
ogy changes to the character.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1 Introduction

Passive physical simulations in virtual environments such as video
games improve the interactivity and realism of simulated objects
and simplify the production by removing the need for scripted or
data-driven animation contents. Effective physically based loco-
motion controllers for characters could extend these advantages to
active dynamic characters. To be effective, dynamic character con-
trollers should possess a number of characteristics. First, they need
to be able to navigate on uneven terrain: terrain in interesting vir-
tual environments is rarely completely flat all the time. Second,
the controllers need to be able to perform navigation by changing

directions with agility similar to humans (e.g., completing a 180◦

turn in two steps): quick direction changes are challenging because
motion patterns for turning are more complex than forward walk,
and increase in agility often compromises stability. Third, the con-
trollers should take optimality principles such as minimum torque
into accounts when generating motion: in addition to being physi-
cally correct, the motion patterns also need to be similar to those of
real animals.

Recent research has made significant progress towards each of these
goals separately, either through robust manually constructed and
tuned controllers [Yin et al. 2007], or by using robust trajectory-
data following controllers to achieve greater realism [Muico et al.
2009]. In this paper we focus on a mechanism that automatically
creates controllers from scratch without manual parameter tuning
or use of motion data, while at the same time trying to approach
the key objectives of natural biped controllers applicable to interac-
tive environments and video games. We focus on a control method
that is invariant to the simulation process so that it can be easily
combined with existing physics engines.

We use a two-layer control hierarchy where the higher level plans
the optimal paths for a small set of key end effectors. These tra-
jectories consider specific properties of the terrain, leading to lo-
comotion that appears efficiently aware of the environment. Other
parameters of the trajectory relevant to efficiency and longer hori-
zon stability are automatically determined in the offline optimiza-
tion process. The lower-level control solves a quadratic program
(QP) to determine real-time actuations that follow trajectories.

The key contribution of this work is a framework for automatic syn-
thesis of biped controllers capable of performing various locomo-
tion skills including walking sideways and backwards on uneven
terrain; the controllers also exhibit fast, responsive turning abilities
that approach those seen in natural systems. Planning for key trajec-
tories and a separate compliant control that follows the trajectories
is a particularly flexible control structure that is possibly not far off
from the strategies that natural systems use [Abend et al. 1982].

Our examples show that terrain-aware control eliminates the need
of using unnaturally high clearance during the swing phase on un-
even terrain, a typical strategy that terrain-blind controllers use. We
also show that a two-level controller structure is capable of con-
trolling certain morphologically different bipeds, such as one with
inverted knees, without any changes to the controller.

2 Related Work

Offline methods can be used to synthesize animation of bipedal lo-
comotion [Rose et al. 1996; Safonova et al. 2004; Liu et al. 2005].

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

These offline methods use optimization and the optimality princi-
ples to generate natural motion. However, they cannot be used di-
rectly in a dynamically simulated interactive environments, since
they do not synthesize controllers, only trajectories. A procedural
kinematic gait generator can be more efficient in generating differ-
ent gaits [Sun and Metaxas 2001]; however, its kinematic nature
still limits the degree of interaction between the character and the
environment. Dynamical controllers exhibit more physically real-
istic behaviors because they interact with the environment and use
delicate strategies similar to natural systems to maintain balance.
These controllers can be manually constructed [Raibert and Hod-
gins 1991; Stewart and Cremer 1992; Hodgins et al. 1995] or be fur-
ther fine-tuned using automatic methods [van de Panne et al. 1992;
Laszlo et al. 1996; Yin et al. 2007]. High-fidelity realism of natural
locomotion is more difficult to achieve with manual construction.
Manually constructing controllers for agile and responsive locomo-
tion skills such as walking sideways with crossing legs or making
180◦ turns can also be difficult because of the more complex mo-
tion patterns necessary for these maneuvers. Motion capture data
can be used as initial references for these more complex controllers
[Muico et al. 2009].

A common feature of many existing locomotion controllers is the
use of reference trajectories for all joint angles. Such controllers
follow the references either by using PD controllers at all joints,
solving quadratic programs for the tracking torques [da Silva et al.
2008], or by building value functions around the trajectories and
deriving control signals from the value functions [Atkeson and Mo-
rimoto 2002]. Adapting to uneven terrain is a unique challenge for
controllers relying on these references because it requires nontriv-
ial changes to the trajectories for all controllers [Yin et al. 2008].
If motion capture data are used as the source references, it may be
necessary to collect motion data on terrain with many different ele-
vation changes for each type of motion.

An end-effector oriented control structure (in contrast to direct joint
control) has long been postulated as a key aspect of control in
natural systems [Bernstein 1967]. Recently, neuroscientists have
shown indications that humans use end-effector control for tasks
such as arm reaching [Todorov 2004]. Combining end-effector con-
trol and the optimality principles, researchers have computation-
ally reproduced the arm-reaching motion [Bullock and Grossberg
1988]. Control of robot manipulators benefits from describing the
dynamics in terms of the end effectors [Khatib 1987], and a related
technique has been used to create simple biped robots [Pratt et al.
1997]. In this work, we consider locomotion as a goal-directed task
that involves three end effectors: the upper body moves at a roughly
constant speed, and the two feet alternate to advance in the move-
ment direction. We show that this simple high-level structure can
be used to successfully synthesize agile bipedal locomotion control.

Creating fully automated agents requires a long-horizon planner
that plans ahead for many footsteps [Coros et al. 2008]. Static sta-
bility of the biped is often used as one of the objectives instead of
dynamic stability to make the planning problem feasible [Kuffner
et al. 2001; Zhang et al. 2009]. Even though motion primitives can
be used to improve the quality of the motion [Hauser et al. 2008],
the statically stable motion invariably appears less natural. In this
work we focus on a short-horizon (one footstep) planner that ac-
quires dynamic stability via optimization. The long-horizon plan-
ning is deferred to the users who interactively command the biped
to perform different locomotion skills.

3 Overview

At run-time, our system takes as input the user-specified task goal
G at each footstep and in real time outputs the joint torques τ θ that

planner QP simula onθ
τ,p R

per mestep (64 Hz)

per footstep (~2 Hz)

offline run- me

task goal G

states

controller

set

Ω

terrain

Π

0G
P

1G
P

2G
P

M

op mi-

za on

Figure 2: System overview.

move the biped character in the virtual environment at each simu-
lated timestep. We compute τ θ using a two-layer control hierarchy.

At the higher level, the end-effector path planner plans the position
trajectories p(t) and orientation trajectories R(t) for the end ef-
fectors for half a locomotion cycle (roughly a footstep). Planning
occurs at the start of each half-cycle. We define the end-effector
path planner with a compact set Ω of parameters, determined auto-
matically during the preprocessing stage. At run-time, the planner
takes terrain information into account and adapts the trajectories for
foot-ground collision avoidance and to elevation changes.

The lower-level control follows p(t) and R(t) by using the outputs
from a set of end-effector PD controllers as a reference. At each
timestep, lower-level control solves a QP for the joint torques τ θ .
The PD controllers are used to ensure compliant behavior. No PD
controllers are actually simulated: the joint torques are a product
of QP optimization. We include the automatically determined PD
controller coefficients in the lower-level control parameter set Π.
We devise a simple way of modifying the QP to handle the changed
dynamics due to ground contacts without the need for dynamically
changing PD controller coefficients.

During the preprocessing stage, the offline optimization tunes con-
troller parameters P (which include both Ω and Π) for each task G
by evaluating a cost function using simulations. During interaction,
the appropriate values of P are then chosen from the preprocessed
results at the start of each half-cycle based on the user-specified task
goal G. The system components and their interaction are shown in
Figure 2. Note that the run-time portion of the system is also used
during offline optimization to evaluate the cost function.

4 End-Effector Path Planning

The path planner plans the paths of the end effectors ahead for a
half-cycle whose duration th is predetermined. At the beginning of
a half-cycle, the path planner takes as input (1) the current positions
and orientations of the end-effector links and (2) the task goal G =
(ψf , ψm, r), where ψf is the desired facing angle at the end of the
half-cycle, ψm is the desired movement direction angle, and r is
the desired step length. The preset duration th and step length r
together determine the desired walking speed. The path planner
then outputs the desired linear positions p(t) and orientations R(t)
of the end effectors as functions of the elapsed half-cycle time t.

We consider the upper body and the two feet as the end effectors.
Upper limbs can be added with the hands or the forearms as addi-
tional end effectors as shown in our results, but we shall omit them
from most of our discussion for brevity.

Constructing p(t) and R(t) for each end effector follows the pro-
cess of (1) determining the target (linear or angular) position and
(2) constructing a path that connects the starting and target posi-
tions. Both steps use parameters in Ω. The optimized values of Ω
are chosen from the offline optimization results given the run-time

72:2 • J. Wu et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

task goalG. We describe the construction process of p(t) and R(t)
in §A.

Below, we describe two key aspects which enable the controllers
to adapt to and navigate on uneven terrain. End-effector planning
makes it easy to implement these two strategies: the planner simply
adds offsets to the end effectors’ paths or target positions.

Terrain Awareness and Adaptation At run-time, the planner
samples the terrain heights along the swing-foot path and adds
height offsets to the path to avoid unwanted collisions. The aware-
ness of terrain is a key distinction of our method from the terrain-
blind approach in which individual controllers do not adapt to ter-
rain variations. The awareness eliminates the need for (fixed) swing
foot paths with high clearances on uneven terrain.

Per-Footstep Balancing At run-time, the planner also modifies
the horizontal target positions of the swing foot and upper body
based on (piecewise) linear feedback of the upper-body positional
deviation at the end of the previous half-cycle. Effectively, if the
previous half-cycle control leads the biped away from the expected
upper-body state, the planner adjusts the swing-foot and upper-
body targets to compensate in the subsequent half-cycle. The feed-
back and bias coefficients for balancing are part of the planner pa-
rameters Ω and are automatically tuned by the optimization.

5 Frames and Frame Tracking

LA

LR

L

z

y

x

Figure 3: Frames
and their types.

Once we have the desired paths from the
planner, we need to compute the joint
torques to execute the plan. To facil-
itate the joint-torque computation, we
attach coordinate frames and ideal PD
controllers to the end-effector links.

It is straightforward to compute the de-
sired linear or angular positions and ve-
locities of the frames from the desired
paths p(t) and R(t) of the links given
by the planner. Each frame has a corre-
sponding ideal PD controller that tracks
the desired frame position or orientation.
We call them ideal PD controllers be-
cause we do not apply their outputs di-
rectly to the underactuated biped. In-
stead, we treat their outputs as ideal
forces and torques we would like to re-
produce using joint torques in a physically valid manner.

There are three types of PD controllers and frames: linear-angular
(LA), linear (L), and linear relative (LR) (Figure 3).

An LA PD controller tracks both the linear and angular positions
and velocities of an LA frame. Given the desired linear and angular
positions and velocities (p, ṗ, R, and ω) and the current positions
and velocities (p̂, ˙̂p, etc.) of frame i, we can compute its ideal force
fi and torque τ i as

fi = kp (p− p̂) + bp
(
ṗ− ˙̂p

)
+ cpz (1)

τ i =

2∑
j=0

êj ×
[
ko (ej − êj) + bo

(
ėj − ˙̂ej

)]
(2)

where cp is the bias coefficient added so that the feedback terms do
not have to compensate for gravity, and e0 to e2 are unit vectors
aligned with the (local) x-, y-, and z-axes of the frame.

An L PD controller tracks only the linear position and velocity of
the L frame, and we use Equation 1 to compute its ideal force.

An LR PD controller tracks the linear position and velocity relative
to the center of the link to which the LR frame is attached. The
ideal force is

fi = kr (r− r̂) + br
(
ṙ− ˙̂r

)
(3)

where r = p− p0 is the relative position of the frame with respect
to the center p0 of the link.

We attach an LA frame to the upper body, an L frame to each foot
at the ankle, and three LR frames to each foot at the toes and the
heel. The L frame at the ankle is primarily for moving the foot.
The LR frames at the toes and the heel orient the foot during the
swing phase. As we shall see later, the frames on the feet can serve
as supports when the geometries they are attached to are in contact
with the ground.

The PD controller coefficients (k, b, and c) are included in the
lower-level parameter set Π and tuned by the offline optimization.

6 Solving for Joint Torques

In order to compute internal forces and torques, we pair up the
frames between which we wish to apply forces. A pair (Ai, Aj)
of frames consists of a reaction frame Ai and an action frame Aj .
(We follow the use of terminologies in Pratt and colleagues’ work
[1997].) For the biped, there is M = 1 reaction frame A0 which is
attached to the upper body. All the N = 8 frames on the feet are
action frames, denoted as A1, . . . , A8. We pair up the upper-body
reaction frame with each of the 8 action frames on the feet. We use
S to denote the set of all K = 8 frame pairs.

6.1 Generalized States and Forces

In this subsection we briefly define the generalized state and force
vectors we shall use in our discussion and their relationship to the
joint torques. Detailed derivations can be found in standard text,
e.g., Craig [1989].

The generalized state vector is

x =
(
p>i0j0 , . . . ,p

>
iK−1jK−1

)>
Each 3-vector pij is the relative position of action frame Aj to the
position of reaction frame Ai in the global frame:

pij = pj (θ,proot,θroot)− pi (θ,proot,θroot) (Ai, Aj) ∈ S

where θ is the joint angles, and proot and θroot are the global posi-
tion and orientation of the root link. (We use the upper body as the
root.)

The generalized force vector is

f =
(
f>i0j0 , . . . , f

>
iK−1jK−1

)>
Each 3-vector fij is the force applied at the origin of action frame
Aj from reaction frame Ai; for each fij , an opposite force −fij is
applied to the reaction frame Ai at the same location.

The Jacobian J = ∂x/∂θ is useful for computing the equivalent
joint torques τ θ given the generalized forces: τ θ = J>f . We do
not compute the Jacobian with respect to proot or θroot because
they are unactuated.

Terrain-Adaptive Bipedal Locomotion Control • 72:3

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

6.2 Quadratic Program Formulation

Given the ideal PD controller forces fi and fj , and torques τ i, we
would like the generalized forces to exactly reproduce them at each
frame: ∑

j,(Ai,Aj)∈S

−fij = fi i = 0, . . . ,M − 1

∑
i,(Ai,Aj)∈S

fij = fj j = M, . . . ,M +N − 1

∑
j,(Ai,Aj)∈S

(pj − pi)×−fij = τ i i = 0, . . . ,M − 1

or in matrix form
Af = b (4)

where b> =
(
f>0 , . . . , f

>
M+N−1, τ

>
0 , . . . τ

>
M−1

)
. The equality

(Equation 4) is in general infeasible for an underactuated system.
We solve a quadratic problem instead for the physically valid gen-
eralized forces that minimize the ideal force and torque errors:

min
f

‖Af − b‖2W (5a)

subject to − fmax ≤ f ≤ fmax (5b)

− τmax ≤ J>f ≤ τmax (5c)
Zf = 0 (5d)

Z is a matrix whose columns are the basis for the null space of
J>, and fmax (= 2000) and τmax are bounds of the generalized
forces and joint torques. The null space constraint Zf = 0 makes
sure that f lies in the row space of J> and that the joint torques
can exert the generalized forces as desired. We include W in Π so
that the relative weights are automatically balanced by the offline
optimization. Diagonal entries in W corresponding to weights for
the upper-body ideal forces and torques are set to a common value
chosen by the optimization; the weights for the feet are set to 1.

It is worth noting that our QP formulation uses the end-effector
force and torque errors as the objective, while previous work has
used joint acceleration errors as part of the objectives [Abe et al.
2007].

6.3 Ground Contacts

With the changing dynamics caused by ground contacts, the PD
controllers with linear feedback are unlikely to produce suitable
tracking forces for all different cases. The deficiency of the PD
controllers suggests that we need to solve for the generalized forces
differently when there are ground contacts.

We devise a naive scheme that modifies the QP to handle the
changed dynamics. This scheme works well when combined with
the offline optimization. When the geometry to which a stationary
(as specified by the desired path) action frame is attached is in con-
tact with the ground, we treat the frame as if it were pinned to the
ground. Under this assumption, the ideal force fj would have no ef-
fect on a “pinned” action frameAj , and therefore we remove errors
of fj from the objective (Equation 5a) by removing the correspond-
ing rows and elements in A and b. Because the frames are never
actually pinned to the ground, combinations of desired end-effector
paths and PD controller coefficients that cause excessive movement
of the “pinned” frames will automatically be penalized by the cost
function the offline optimization uses. This scheme avoids the need
to explicitly tie our controllers to the collision handling algorithm
and the need to add complicated constraints to the QP.

The current and desired states of a stationary frameAj must satisfy

‖pj − p̂j‖2 < εp, and
‖ṗj‖2 < εṗ

where εp = 0.2 m and εṗ = 0.05 m/s. On each foot we use two
box geometries for contact, one for the toes and one for the heel,
both of which are attached to the rigid foot link. The advantage
of using multiple frames on the foot over using a single one is that
when three or more frames on the feet are “pinned”, they form an
area of support for the upper body. The area may degenerate into a
line or a point when there are fewer “pinned” frames.

The resulting problem is a simple convex QP that can be solved us-
ing various QP solvers; we use the MOSEK optimization software
[Mosek ApS 2009]. Once we have the generalized forces f , we can
compute and apply the equivalent joint torques at the joints, plus
the null-space control torques if necessary (§B).

7 Locomotion Controllers

We define a cyclical locomotion controller using a tuple Pc of un-
known parameters; Pc contains two sets Ω0 and Ω1 of planner pa-
rameters (one for each half-cycle) and two sets Π0 and Π1 of lower-
level control parameters:

Pc = (Ω0,Ω1,Π0,Π1)

A transitioning controller connects two cyclical controllers using
one or more half-cycles depending on the length of the transition.
To allow more natural transitions, we further include the task goals
during the transition as unknowns. The parameters of a T -half-
cycle transitioning controller are

Pt = (Ω0, . . . ,ΩT−1,Π0, . . . ,ΠT−1, G0, . . . , GT−1)

During interaction, if a task goal Gnew requires transition from the
current cyclical controller, the proper transitioning controller will
be used during the transition. After the transition, the new goal
Gnew will be used as the input to the new cyclical controller.

8 Offline Optimization

The offline optimization tunes Pc or Pt for each locomotion con-
troller. We use the CMA evolution strategy as a black-box op-
timizer [Hansen 2006]. CMA has previously been used to suc-
cessfully solve locomotion and controller problems [Wampler and
Popović 2009; Wang et al. 2009]. CMA starts with a Gaussian prior
distribution of the unknowns in the search space. At each iteration
(generation), it generates a number λ of samples using this distribu-
tion and evaluates the performance of each sample according to the
cost function. It then picks the top-performing samples (the elites)
and uses their positions in the search space to update the distribution
so that the new distribution is more likely to contain good samples.
It repeats the process until convergence, i.e., when the distribution
mean no longer changes significantly.

8.1 Cost Function

The cost function we use consists of (1) the frame-tracking errors,
(2) the per-footstep center-of-mass (COM) deviation error, and (3)
the energetic cost.

We compute the frame-tracking error etrack,i of frame i using
Equations 1–3 (depending on the frame type) by replacing the
PD controller feedback coefficients with the square roots of the

72:4 • J. Wu et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

weights and setting the bias coefficient, if any, to zero. Empiri-
cally, we have found that not penalizing deviations that are smaller
than a tolerance εtrack makes the motion more natural, possibly
because the tolerance encourages the controller to use passive dy-
namics near the planned paths. The tracking error is the sum of
squares of the “forces” (and “torques”, if it is an LA frame) we thus
compute minus the tolerance. For example, let ftrack,wkp,wbp and
τ track,wko,wbo denote the terms for an LA frame we compute by
using the weights wkp, wbp, wko, and wbo as replacement coeffi-
cients; the tracking error is

etrack =
{∥∥ftrack,wkp,wbp∥∥22 − εtrack}+

+
{
‖τ track,wko,wbo‖

2
2 − εtrack

}+
where {x}+ denotes max (x, 0). The tolerance εtrack is set to
2.5e-3.

The COM deviation error is the squared COM deviation,
‖∆ck‖2Wc

, where ∆ck = ĉk − ck denotes the deviation of COM
horizontal position ĉk from the desired horizontal position ck at the
end of the k-th half-cycle. We compute the desired horizontal po-
sition as ck = ĉk−1 + Rz(ψm)(ry), where Rz (ψ) is the rotation
matrix representing the rotation about the z-axis by ψ. We do not
penalize COM deviations in the vertical direction.

The energetic cost is simply ‖τ θ‖2Wτ
. Let i denote the frame index,

j the timestep index, L the number of timesteps, and k the half-
cycle index. The total cost is

E (P) =

L−1∑
j=0

∑
i

etrack,i +
∑
k

‖∆ck‖2Wc
+
∑
j

‖τ θ‖2Wτ
(6)

where we have omitted the timestep indexes from the frame-
tracking errors and the joint torques, and P can be either Pc or
Pt.

8.2 Helper Force

To better the chance of finding good solutions, we use the helper
force to guide the optimization. Similar helper forces have been
used for locomotion control where the force is applied to the up-
per body [van de Panne and Lamouret 1995]. Here we define the
helper force h for all frames to be the difference between the ideal
PD controller outputs and the actual outputs the generalized forces
produce: h = b−Af .

We introduce the upper bound hmax as an unknown param-
eter in the offline optimization. The actual helper force ap-
plied to the frames in the simulation during the offline optimiza-
tion is clip

(
−{hmax}+, {hmax}+,h

)
, where clip (lb, ub, x) =

max (lb,min (ub, x)).

Relating the use of the helper force to the general constrained op-
timization problems, we convert the constraint (hmax ≤ 0) into
an exact nonsmooth penalty function {hmax}+ and add the scaled
penalty to the cost function. The controller optimization is therefore

min
P,hmax

E (P) + whL {hmax}+ (7)

The advantage of this exact nonsmooth penalty function over a
smooth one such as the quadratic penalty ({hmax}+)2 is that the
performance of the optimization depends less on the value of the
penalty parameter wh and how we update it [Nocedal and Wright
2006]. With the nonsmooth penalty function, the optimization may
still find an infeasible solution (i.e., hmax > 0) if wh is too small.

We may use the standard continuation procedure and restart the
optimization with a larger value for wh after the optimization ap-
proximately converges to an infeasible solution. However, CMA is
able to find feasible solutions for all our controllers with the initial
weights, and therefore we do not have to resort to continuation.

8.3 Optimization Setup

For each cyclical controller, we accumulate the cost for 4 locomo-
tion cycles. The weights of the tracking errors are wkp = wko =
wkr = 1 andwbp = wbo = wbr = 0 for all frames. Wc = 100I (I
is the identity matrix), and Wτ = (8e-2)Wpref , where Wpref is a
diagonal matrix whose diagonal elements are set to the squared in-
verses of the joint torque upper bounds to encourage use of stronger
muscles. The penalty parameter wh = 5e-3. We set th to 0.55 for
all walk controllers; r = 0.65 for forward and backward walk con-
trollers, r = 0.5 for side-stepping controllers, and r = 0 for the
standing controller.

A different random height field is used in each CMA iteration, while
samples in the same iteration use the same height field. The grid
spacing of the height fields is 1 m× 1 m, and the grid point heights
are uniformly distributed between 0 and 0.2 m. Terrain with vertical
drops created with boxes is also used for the optimization of the
forward walk controller. The box heights are uniformly distributed
between 0 and 0.2 m.

For each transitioning controller, we accumulate the cost for six lo-
comotion cycles, with the first three half-cycles using the first cycli-
cal controller, followed by the transitioning controller, and then the
second cyclical controller. All our transitioning controllers consist
of two half-cycles. The cost-function weights are the same as those
for cyclical controllers, but the COM deviation error term is dis-
abled during the transition. We add additional per-half-cycle track-
ing errors starting from a half-cycle after the transition to encourage
quick entry into cyclical motion. The average poses of the second
cyclical controller at the start of each half-cycle are used as de-
sired poses, and the weights for the additional tracking errors are
wkp = wko = wkr = 5 and wbp = wbo = wbr = 5e-2. The
transitioning-controller optimization uses the same type of height
fields that the cyclical-controller optimization uses.

We expect that in game environments the upper limbs may need
to be controlled independently from the locomotion. We include a
few different types of predefined upper-limb motion, such as natu-
ral swing and spreading out, in the optimization as “noise,” similar
to the way we include random terrain. The upper limbs are dy-
namically controlled with the forearms as end effectors, and the
additional ideal PD controller coefficients are also solved for in the
offline optimization.

The number of unknowns ranges from 46 to 70. The CMA popula-
tion size λ is set to 32 for all controller optimizations. We list the
bounds of the unknowns in Table 1. The value of hmax is bounded
between -200 and 1000: the lower bound is set to a negative value
so that CMA can more easily generate samples that do not use any
helper force with the rejection sampling scheme. When passed to
CMA, the bounds are normalized to [0, 1]. The normalized initial
values are uniformly set to 0.5 and standard deviations uniformly
0.3. We terminate the CMA optimization when the change of the
distribution mean drops below 1e-3, or when it reaches the 4000th
iteration.

9 Results

We have found CMA to be robust to local minima, at least in terms
of finding solutions that are feasible and have consistent resulting

Terrain-Adaptive Bipedal Locomotion Control • 72:5

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

motion: multiple trials of the forward walk controller optimization
give visually identical results. The sufficiently large initial standard
deviation allows CMA to properly sample the search space at the
beginning, and therefore there is no need to manually tweak the
initial values of the unknowns for each optimization.

We create five cyclical controllers for moving in four different di-
rections and standing still, and we selectively create a number of
transitioning controllers to connect the cyclical controllers (Table
2). With a cyclical controller, we can also use the task goal G for
small (±15◦) facing and movement direction changes. We use both
cyclical and transitioning controllers in navigation tasks on uneven
terrain (with the same specification used in the optimizations) and
on slopes of±0.2 (±11.3◦). The user interactively specifiesG, and
the system chooses appropriate cyclical or transitioning controllers
to achieve the goals. Since each cyclical or transitioning controller
is created automatically without manually tuning any controller pa-
rameters, and each controller adapts to terrain at run-time, the total
set of controllers can be easily expanded. For example, we have cre-
ated a single expert controller that climbs up stairs with rise heights
between 0 and 0.4 m, and another that walks down. We have also
created a controller that walks diagonally across random boxes.

A number of emergent patterns in motion arise from optimization.
The side-stepping controller exhibits natural leg-crossing motion,
and benign inter-leg collisions that alter non-end effectors’ states
are allowed to happen, just like in natural systems, because the
controller is mainly concerned about the task-related end-effector
positions and not about trying to control the exact angle of every
joint. Appropriate foot placements for nontrivial turns, such as a
180◦ turn, or a 90◦ turn from forward walk to side-stepping, are
all determined automatically by the optimizations. The placements
are nontrivial because the planner needs to avoid motion that causes
tangling of the legs during turning. All these behaviors happen at
the same time each individual controller adapts itself to the terrain
encountered at run-time.

To demonstrate the importance of making controllers terrain-
adaptive, we compare the adaptive forward controller with a blind
forward controller. The blind forward controller is optimized on un-
even terrain and with the terrain adaptation turned off. To avoid un-
wanted collisions with the ground, the blind controller uses higher
clearance, and the motion looks visibly less natural. From this we
stipulate that terrain adaptation is an important aspect of the simu-
lated locomotion strategy for the modeling of natural systems.

Because the planner plans in the end-effector space instead of the
joint space, our controllers are capable of handling certain mor-
phology changes of the character (Figure 4). We freeze one of the
knees of the biped by setting the joint movement range to zero. The
unaltered forward walk controller is still able to walk on uneven
terrain in limping motion. The lower-level control automatically
self-adjusts to use more pronounced motion at the hip to lift the
swing foot. The unaltered forward walk controller also works on a
biped with inverted knees. In a sense, path planning of key trajec-
tories abstracts away many details of the biped structure and thus
enables the controllers to work with these morphology changes.

Our tests with controllers for the running gait or on stairs with high
rises show that it requires additional mechanisms to obtain good
controllers. For example, the hip link tends to move erratically dur-
ing running. An active spring that keeps the waist joint close to
its neutral position is able to stabilize the movement. We also add
active springs at the ankles and allow the offline optimization to
tune their spring and damper coefficients. These active springs cor-
respond to the active change of muscle stiffness in human [Farley
and Gonzlez 1996], and we include the torques they exert in the
energetic cost.

Figure 4: Applying the unaltered forward controller to two differ-
ent bipeds: one with its left knee frozen (top), and one with inverted
knees (bottom).

Because generating motion similar to that of real humans is one of
our goals, we avoid including disturbances that natural systems do
not routinely encountered. For example, we experimented with op-
timizing a controller by including external pushes of 700 N with
0.1 s durations. The controller lowers the center of mass and walks
with knees always bent. This is a more robust strategy but not a
“natural” one, most likely because natural systems do not routinely
expect large disturbances. In addition, walking with knees always
bent is more exhausting [Carey and Crompton 2005]. The opti-
mized controller is not able to reliably recover from these pushes,
and different controllers may be necessary for recovery from pushes
coming from different directions. However, even though the normal
forward walk controller is optimized without push disturbances, it
can sustain sideways or forward pushes of 350 N with 0.1 s dura-
tions. The controller is more sensitive to backward pushes, and it
either falls or recovers using less natural motion.

On a rougher height field with grid point heights distributed be-
tween 0 and 0.4 m, although the terrain adaptation appears to work
well, occasionally the controller fails when stepping on a steep
slope. Switching to controllers with slower motion, or a higher-
level planner that plans ahead for more footsteps and places foot-
falls at flatter regions may be required to keep the biped from falling
on rougher terrain.

10 Conclusion

In this paper, we present a method to automatically generate biped
controllers capable of adapting to and navigating on uneven terrain.
We show that planning of end-effector paths is an effective abstrac-
tion that makes balancing and adaptation to terrain more straight-
forward and can produce controllers capable of handling certain
morphology changes. Furthermore, our experiments show that ter-
rain adaptation results in controllers more natural than those that
are blind to terrain. The synthesis is fully automatic, requiring no
captured data or manual controller parameter tuning.

We note that the controller model does not use ZMP or other static
stability rules to maintain balance. The controllers maintain balance
by learning through optimization how to modify the end-effector
paths at run-time in order to compensate for drift from the planned
trajectory. This strategy leads to increased agility and allows our
controllers to perform 90◦ and 180◦ turns in two footsteps by using
motion that is not constrained by static stability rules.

Similar to most other methods that use the optimality principles
in the optimization, our framework does not provide direct control
over the final motion style to the users. Changes to the energetic

72:6 • J. Wu et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

Parameter Bounds Parameter Bounds

upper body kp [0, 4000] te [0, 0.6] × th

upper body bp [0, 800] csw [-0.3, 0.3]

upper body cp [0, 140] × 9.8 kx, ky (in K+ and K-) [0, 3]

upper body ko [0, 4000] γ1, γ2 [0, 1]

upper body bo [0, 80] θsw1, θsw2 [-180, 80] (degrees)

ankle kp [0, 4000] wsw1,u [0, 0.8]

ankle bp [0, 400] wsw2,u [0.2, 1.0]

ankle cp [0, 10] × 9.8 wsw1,v, wsw2,v [0, 0.8]

toe & heel kr [0, 8000] wub1,u [0, 0.66]

toe & heel br [0, 100] wub2,u [0.33, 1]

 cub,x, cub,y [-0.3, 0.3]

 zub [-0.3, 0.3] + zub0, zub0

 θub,eh, φub,eh [-15, 15] (degrees)

 ψub,eh [-30, 30] (degrees)

Table 1: Bounds of unknowns in offline optimization. Each half-
cycle in a controller has its own path planning parameters, except
for symmetric controllers. The offset zub0 is the natural height of
the upper body.

to

from____
f l r b s

f tl90, tr90, tl180, tr180 nt, tr90 nt, tl90 tl180, tr180 nt

l nt, tl90 tl180 tr180 tr90 nt

r nt, tr90 tl180 tl180 tl90 nt

b tl180, tr180 tl90 tr90 nt

s nt nt nt nt

Table 2: Transitions between cyclical controllers. Cyclical con-
trollers: f (forward), l (sideways left), r (sideways right), b (back-
ward), s (stand). Transition types: nt (no turning), t{l,r}{90,180}
(turn {left,right} {90,180} degrees). The facing directions are used
as references for turning angles.

cost’s weight, or additional objective terms, such as one that pe-
nalizes large heel-strike impulses, need to be used as an indirect
way to shape the optimization into producing motion closer to the
desired styles. More dramatic morphology changes, such as one
that results in a large horizontal COM shift, or large changes in the
links’ mass, will likely invalidate the unaltered controller. These
larger morphology changes can be handled with re-optimization of
the controller.

Robustness of the controllers can be extended by creating addi-
tional controllers using our automatic process specific to the dis-
turbance variation, such as higher stairs, steeper slopes, and push
disturbance. Coupled with a higher-level planner, the union of these
automatically generated controllers would be significantly more ro-
bust [Coros et al. 2009; Chestnutt et al. 2003]. Because individual
terrain-aware controllers can be created automatically, we expect
that these controllers will be ideal building blocks for higher-level
control that covers a broad range of natural locomotion behaviors.

Acknowledgments

Our thanks go to Emanuel Todorov and Jovan Popović for their
feedback and comments on earlier versions of this paper. This work
was supported by the UW Animation Research Labs, UW Center
for Game Science, Microsoft, Intel, Adobe, and Pixar.

A Planner Details

Here we describe a specific planner whose path representation is
very compact in terms of the number of optimization parameters.
The paths computation process can be easily replaced with another,
since lower-level control uses only the output paths from the plan-
ner.

e
t

h
t

e
t′

�me

swing-foot path

stance-foot path

Figure 5: Durations of foot paths. The swing-foot path duration
extends into the next half-cycle. The stance-foot path starts at t′e
time into the current half-cycle, where t′e is from the previous half-
cycle.

The angles ψf and ψm in the task goal are defined as the an-
gles from the y-axis to the desired directions. We have designed
the path planner to be orientation invariant: a planner that takes
a specific task goal (ψf , ψm, r) can also be used when the goal
is (ψf + ∆ψ,ψm + ∆ψ, r) for any ∆ψ, as long as the biped has
been oriented and positioned properly at the start of the half-cycle.

In the following discussion, we shall mark each unknown parameter
in Ω with an underline.

A.1 Timing

We define the (nonstandard) swing phase to also include the inter-
vals when the foot is in contact with the ground but not stationary.
We allow the swing phase to be longer than the half-cycle duration
th by an additional amount of time te (Figure 5). We refer to the
swing phase duration th + te as the footstep duration. The variable
te is automatically determined by the optimization. The stance-foot
path is stationary.

Given the elapsed half-cycle time t, we compute the normalized
half-cycle time sh(t) = t/th and normalized (foot-)step time
ss(t) = t/(th + te). We use the subscript eh to denote the end
of a half-cycle and es the end of a footstep.

A.2 Targets

Swing-Foot horizontal target is computed in a two-step process.
First, the horizontal target is placed (approximately) along the goal
movement direction from the stance-foot horizontal position qst at
location qst + qsw,0. (We shall use q to refer to a point or vector
on the horizontal x y-plane from here on.) Second, this location
is adjusted by an offset qsw,bal using the feedback from the upper
body deviation ∆q′ub,eh from the previous path’s target. The target
position is then

qsw,es = qst + qsw,0 + qsw,bal (8)

The goal-based placement qsw,0 is determined by adding the goal
movement ry (oriented using ψm) to the offsets that preserve the
natural distance between feet due to the hip width (see Figure 6).
Formally,

qsw,0 = Rz

(
ψ′f
)
d0 + Rz (ψm) ry + Rz (ψf)d0

where ψ′f is the previous facing angle.

The adjustment qsw,bal is represented as a piecewise linear func-
tion of the upper-body deviation in a local coordinate system. The
local y-axis of the coordinate system is aligned with the movement
direction defined by ψm. Formally,

qsw,bal = Rz(ψm)(K+{∆q
′
ub,eh}+ + K−{∆q

′
ub,eh}− + csw)

where csw is a horizontal bias. K+ and K− are diagonal gain ma-

trices. Note that the upper-body deviation ∆q
′
ub,eh is computed in

Terrain-Adaptive Bipedal Locomotion Control • 72:7

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

(1)

(3)
(2)

y

(a)

Figure 6: Three components of qsw,0: (1) Rz

(
ψ′f
)
d0, (2)

Rz (ψm) ry, and (3) Rz (ψf)d0. Vector d0 is the offset from the
stance foot to midway between the two feet when the biped is in the
neutral position and facing the +y direction. Neutral positions of
the feet are shown with dotted lines. Point (a) is the upper-body
target position before balance adjustment.

the local coordinate system. We use a piecewise linear function be-
cause excessive adjustment may lead to leg collisions, but with the
piecewise function the optimization can choose more conservative
coefficients in the collision-prone half-space while still adjusting
aggressively in the safer half-space.

The target z orientation ψsw,es is set to point in the goal direction
ψf . The terrain slope specifies the target x orientation θsw,es (the
angle between the foot proximodistal axis and the x y-plane).

Upper-Body target position pub,eh is computed in a two-step pro-
cess similar to the aforementioned swing-foot computation process.
Its horizontal component is

qub,eh = qst + qub,0 + qub,bal (9)

The goal-based offset would place the upper body at midway (i.e.,
the point (a)) of the second vector in Figure 6:

qub,0 = Rz

(
ψ′f
)
d0 +

1

2
Rz (ψm) ry

The linear (instead of piecewise linear) balance adjustment is

qub,bal = Rz(ψm)(Kub∆q
′
ub,eh + cub)

Because the upper body’s vertical position is constrained by the leg
length and the lower of the two foot positions, we define the vertical
component of pub,eh to be the lower of the two foot positions at the
end of the footstep plus an adjustable offset zub.

The target upper-body orientation Rub,eh is free varying. All three
offset angles θub,eh, φub,eh, and ψub,eh are determined by the op-
timization:

Rub,eh = Rz(ψf)Ry(φub,eh)Rx(θub,eh)Rz(ψub,eh) (10)

Edge Avoidance is performed on terrain with vertical drops. The
planner is extended to perform a simple search near qsw,es for a
location that would result in the least amount of foot rotation to
avoid stepping on edges. The search is performed at qsw,es and
the two locations ±ds distance way from qsw,es in the direction
defined by ψm. The distance ds is set to 0.75 of the foot length.
If the search results in ∆qa change in swing-foot target, we also
offset the upper-body horizontal target by αa∆qa.

A.3 Paths

We use three types of curves to represent the paths. In increasing
order of flexibility, they are (I) a simple slow-in/slow-out curve, (II)

h

,ub start
p

,ub eh
p

0ub
w

()
sw s
sp

0
()

ub h
sw

()
ub h
sp

a

1sw
w

2sw
w

sw,start
q

sw,es
q

v

u
0sw

w

b

v

u

1ub
w

2ub
w

,ub start
q

,ub eh
q

c d

0
()

sw s
sw

Figure 7: (a) Initial swing-foot path wsw(ss) in local u v-
coordinate has two tunable control points wsw1,wsw2. (b) Swing-
foot path psw(ss) after height adjustment. (c) Initial upper-body
path wub(sh) in its local u v-coordinate has two tunable control
points wub1,wub2. (d) Upper-body path pub(sh) after slope height
adjustment.

a Bézier curve, and (III) a Bézier curve whose timing is controlled
by another Bézier curve.

I. C(s, α0, α1) = α1−α0
2

(1− cos(sπ)) + α0

II. B(s, α0, α1, α2, α3) =
∑3
i=0 bi(s)αi

III. V (s, α0, α1, α2, α3, α4, α5)

= B(B(s, 0, α4, α5, 1), α0, α1, α2, α3)

where s is the normalized time (can be either sh or ss), and bi
are the Bernstein polynomials. The α’s are standins for the actual
parameters used in the planner, or the starting or end point.

Swing-Foot position path lies in the vertical plane defined by the
points qsw,start and qsw,es and the global z-axis. At run-time, this
curve is height-adjusted to make it collision free with terrain.

More formally, let qsw,start denote the horizontal position of the
swing foot at the start of the half-cycle, and qsw,es the target hori-
zontal position at the end of the step. The initial swing-foot position
path is a Type III curve in the u v-coordinate system defined using
qsw,start and qsw,es (Figure 7a). The origin of the u v-coordinate
system is located at qsw,start; the u-axis is aligned with the vector
(qsw,es − qsw,start) with (u, v) = (1, 0) at qsw,es. The v-axis
parallels, and has the same scale as, the global z-axis. The swing-
foot path has two remaining internal 2D control points wsw1 and
wsw2. Its timing is controlled by two parameters γ1 and γ2:

wsw0 (ss) = V

(
ss,

[
0
0

]
,wsw1,wsw2,

[
1
0

]
, γ1, γ2

)
It is also possible to define wsw1 and wsw2 as 3D control points
to make the path more flexible during turning as in our implemen-
tation. The extension is straightforward, and we describe only the
simpler 2D case here.

The swing-foot orientation paths vary only two angles (twist about
the foot proximodistal axis is fixed to 0). The z orientation path is
a Type I curve with starting and end points ψsw,start and ψsw,es;

72:8 • J. Wu et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

Figure 8: Collision-free convex hull of foot heights.

the x orientation path is a Type III curve with endpoints θsw,start
and θsw,es, and free varying internal control points θsw1 and θsw2.

Specifically, the z and x orientation angles of the swing-foot during
the footstep are, respectively,

ψsw (ss) = C (ss, ψsw,start, ψsw,es)

θsw (ss) = V
(
ss, θsw,start, θsw1, θsw2, θsw,es, γ1, γ2

)
Note that θsw shares the same timing control parameters with
wsw0. From these two we can compute the orientation path

Rsw (ss) = Rz (ψsw (ss))Rx (θsw (ss)) (11)

The path wsw0(ss) is adjusted to ensure that it is collision free:
wsw0(ss) assumes that the ground is the x y-plane and may result
in collisions of the foot with the actual terrain. We uniformly sam-
ple along the local u-axis at 64 locations using horizontal positions
and orientations from wsw0(ss) and Rsw(ss). At each location,
the lowest collision-free vertical position of the foot is determined
using the oriented bounding box of the foot. We then construct
the convex hull h (u) from these collision-free positions (Figure 8).
The convex hull h is added to wsw0(ss) as a vertical offset to pro-
duce the swing-foot position path psw(ss) (Figure 7b).

Upper-Body position path is defined in a plane of two pre-
determined endpoints qub,start and qub,eh and has two freely vary-
ing control points wub1 and wub2 (Figure 7c). The construction
process is similar to that of the swing-foot path. However, unlike
the swing-foot path, it is a Type II curve instead of Type III. The
height adjustment is also simpler here: instead of using the convex
hull, we add the linear slope defined by the heights of the upper
body’s starting and target positions pub,start and pub,eh to get the
final upper-body path pub(sh) (Figure 7d). The upper-body orien-
tation path is a Type I curve interpolating between the starting and
end orientations.

B Null-Space Control

The biped is in a singular configuration when the knee is fully ex-
tended: the rank of the Jacobian matrix decreases at this configura-
tion, and a force from ideal PD controllers that attempts to pull the
ankle towards the hip, for example, results in no torque at the knee.
Near the singular configuration, we may compute and apply an ad-
ditional torque τ ∅ to bring the system away from the configuration
when necessary: when the current distance d̂ between the ankle and
the upper body is larger than the planned distance d (the distance
is computed along the direction from the ankle to the hip joint), we
set the additional bending torque at the knee to

τ∅,knee = ρ cos (θknee) {d̂− d}+

where θknee = 0 when the knee is fully extended, and the cos func-
tion smoothly reduces the additional torque as the system moves
away from the singularity. We set the other elements in τ ∅ to 0.

link mass (kg) and (Ix, Iy, Iz) (kg·m
2
) length (m) joint type τmax (N·m)

upper body 40, (1, 1, 0.1) 0.8

spherical 1600

hip 8.8, (0.1, 0.1, 0.1) 0.15 (radius)

spherical 1200

thigh 8.552, (0.1, 0.1, 0.05) 0.5

revolute 700

shank 4.352, (0.04, 0.04, 0.01) 0.55

spherical 400

foot 1, (0.03, 0.001, 0.03) 0.25

Table 3: Link and joint properties.

toes

heel

a b

Figure 9: (a) Foot collision geometries. (b) The gap in the middle
of the foot.

We include the coefficient ρ in the lower-level control parameter
set Π and use the offline optimization to tune its value. We also
need to compute a canceling torque J>f∅ to keep the end-effector
dynamics unaffected [Khatib 1987]. We find the canceling torque
by solving a QP for f∅ that minimizes

∥∥τ ∅ + J>f∅
∥∥2
2
. The final

joint torque becomes

τ θ = J>f +
(
τ ∅ + J>f∅

)
(12)

C Implementation Notes

We use the NVIDIA PhysX SDK in software mode (no hard-
ware acceleration) for the physics simulation [NVIDIA Corpora-
tion 2008]. The timestep size is 1/64 seconds, and therefore the
controllers operate at 64 Hz. PhysX further divides each timestep
into 32 sub-timesteps internally. The friction coefficient between
the biped and terrain is set to 1. We list the important link and joint
properties in Table 3. A gap between the toes and heel geometries
helps the foot “bite” into the terrain to improve stability (Figure 9).
Because our path planner lacks the intricacy in resolving foot col-
lisions with the other body links, we disable such collisions in the
simulation. The leg links can still collide with each other to prevent
the optimization from exploiting gaits with interpenetrating legs.

Each offline optimization performs parallel computation on 4 ma-
chines with dual quad-core 2.66 GHz processors. For a cyclical-
controller optimization, the computation time for the maximum
4000 iterations is 2.5 hours. Including rendering time, the inter-
active demo takes up 45% (or less than 5% without upper limbs)
CPU time on a machine with a 2.10 GHz Intel Core 2 Duo Proces-
sor running at 64 frames per second.

References

ABE, Y., DA SILVA, M., AND POPOVIĆ, J. 2007. Multiobjective
control with frictional contacts. In SCA ’07: Proceedings of the
2007 ACM SIGGRAPH/Eurographics symposium on Computer
animation, Eurographics Association, 249–258.

ABEND, W., BIZZI, E., AND MORASSO, P. 1982. Human Arm
Trajectory Formation. Brain 105, 2, 331–348.

ATKESON, C., AND MORIMOTO, J. 2002. Nonparametric rep-
resentation of policies and value functions: A trajectory-based
approach. In Neural Information Processing Systems 2002.

Terrain-Adaptive Bipedal Locomotion Control • 72:9

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

BERNSTEIN, N. 1967. The Co-ordination and Regulation of Move-
ments. Oxford: Pergamon Press.

BULLOCK, D., AND GROSSBERG, S. 1988. Neural dynamics
of planned arm movements: Emergent invariants and speed-
accuracy properties during trajectory formation. Psychological
Review 95, 1, 49–90.

CAREY, T. S., AND CROMPTON, R. H. 2005. The metabolic costs
of ‘bent-hip, bent-knee’ walking in humans. Journal of Human
Evolution 48, 1, 25 – 44.

CHESTNUTT, J., KUFFNER, J., NISHIWAKI, K., AND KAGAMI,
S. 2003. Planning biped navigation strategies in complex envi-
ronments. In Proceedings of the 2003 International Conference
on Humanoid Robots.

COROS, S., BEAUDOIN, P., YIN, K. K., AND VAN DE PANN, M.
2008. Synthesis of constrained walking skills. ACM Transac-
tions on Graphics 27, 5 (Dec.), 113:1–113:9.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009.
Robust task-based control policies for physics-based characters.
ACM Transactions on Graphics 28, 5 (Dec.), 170:1–170:9.

CRAIG, J. J. 1989. Introduction to Robotics: Mechanics and Con-
trol. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

DA SILVA, M., ABE, Y., AND POPOVIĆ, J. 2008. Simulation of
human motion data using short-horizon model-predictive con-
trol. Computer Graphics Forum 27, 2, 371–380.

FARLEY, C. T., AND GONZLEZ, O. 1996. Leg stiffness and stride
frequency in human running. Journal of Biomechanics 29, 2,
181 – 186.

HANSEN, N. 2006. The CMA evolution strategy: a comparing
review. In Towards a new evolutionary computation. Advances
on estimation of distribution algorithms, J. Lozano, P. Larranaga,
I. Inza, and E. Bengoetxea, Eds. Springer, 75–102.

HAUSER, K., BRETL, T., LATOMBE, J.-C., HARADA, K., AND
WILCOX, B. 2008. Motion Planning for Legged Robots on
Varied Terrain. The International Journal of Robotics Research
27, 11-12, 1325–1349.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND
O’BRIEN, J. F. 1995. Animating human athletics. In Proceed-
ings of SIGGRAPH 95, ACM, Computer Graphics Proceedings,
Annual Conference Series, 71–78.

KHATIB, O. 1987. A unified approach for motion and force con-
trol of robot manipulators: The operational space formulation.
Robotics and Automation, IEEE Journal of 3, 1 (Feb.), 43–53.

KUFFNER, J.J., J., NISHIWAKI, K., KAGAMI, S., INABA, M.,
AND INOUE, H. 2001. Footstep planning among obstacles for
biped robots. In Intelligent Robots and Systems, 2001. Proceed-
ings. 2001 IEEE/RSJ International Conference on, vol. 1, 500–
505.

LASZLO, J., VAN DE PANNE, M., AND FIUME, E. 1996. Limit
cycle control and its application to the animation of balancing
and walking. In Proceedings of SIGGRAPH 96, ACM, Computer
Graphics Proceedings, Annual Conference Series, 155–162.

LIU, C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Transactions on Graphics 24, 3 (Jul.), 1071–1081.

MOSEK APS, 2009. The mosek optimization software version 6.0.
http://www.mosek.com/.

MUICO, U., LEE, Y., POPOVIĆ, J., AND POPOVIĆ, Z. 2009.
Contact-aware nonlinear control of dynamic characters. ACM
Transactions on Graphics 28, 3 (Aug.), 81:1–81:9.

NOCEDAL, J., AND WRIGHT, S. J. 2006. Numerical Optimization,
2nd ed. Springer.

NVIDIA CORPORATION, 2008. NVIDIA PhysX SDK version
2.8.1. http://developer.nvidia.com/object/physx.html.

PRATT, J., DILWORTH, P., AND PRATT, G. 1997. Virtual model
control of a bipedal walking robot. In IEEE Conference on
Robotics and Automation, 193–198.

RAIBERT, M. H., AND HODGINS, J. K. 1991. Animation of dy-
namic legged locomotion. In Computer Graphics (Proceedings
SIGGRAPH 91), ACM, 349–358.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN,
M. F. 1996. Efficient generation of motion transitions us-
ing spacetime constraints. In Proceedings of SIGGRAPH 96,
ACM, Computer Graphics Proceedings, Annual Conference Se-
ries, 147–154.

SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S.
2004. Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. ACM Transactions on
Graphics 23, 3 (Aug.), 514–521.

STEWART, A. J., AND CREMER, J. F. 1992. Animation of 3d
human locomotion: climbing stairs and descending stairs. In
Eurographics Workshop on Animation and Simulation, 152–168.

SUN, H. C., AND METAXAS, D. N. 2001. Automating gait gen-
eration. In Proceedings of SIGGRAPH 2001, ACM, Computer
Graphics Proceedings, Annual Conference Series, 261–270.

TODOROV, E. 2004. Optimality principles in sensorimotor control.
Nature Neuroscience 7, 9 (Sep.), 907–915.

VAN DE PANNE, M., AND LAMOURET, A. 1995. Guided optimiza-
tion for balanced locomotion. In 6th Eurographics Workshop on
Animation and Simulation, Computer Animation and Simulation,
September, 1995, Springer, Maastricht, Pays-Bas, D. Terzopou-
los and D. Thalmann, Eds., Eurographics, 165–177.

VAN DE PANNE, M., FIUME, E., AND VRANESIC, Z. 1992. A
controller for the dynamic walk of a biped across variable terrain.
In Decision and Control, 1992., Proceedings of the 31st IEEE
Conference on, 2668 –2673 vol.3.

WAMPLER, K., AND POPOVIĆ, Z. 2009. Optimal gait and form
for animal locomotion. ACM Transactions on Graphics 28, 3
(Aug.), 60:1–60:8.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2009. Opti-
mizing walking controllers. ACM Transactions on Graphics 28,
5 (Dec.), 168:1–168:8.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBI-
CON: simple biped locomotion control. ACM Transactions on
Graphics 26, 3 (Jul.), 105:1–105:10.

YIN, K., COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M.
2008. Continuation methods for adapting simulated skills. ACM
Transactions on Graphics 27, 3 (Aug.), 81:1–81:7.

ZHANG, L., PAN, J., AND MANOCHA, D. 2009. Motion plan-
ning of human-like robots using constrained coordination. In
Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS In-
ternational Conference on, 188 –195.

72:10 • J. Wu et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 72, Publication date: July 2010.

